
[m]allotROPism: A Metamorphic Engine for Malicious Software
Variation Development?

Christos Lyvasa,1, Christoforos Ntantogianb,2, Christos Xenakisc,1

1Department of Digital Systems, University of Piraeus, Greece
2Department of Informatics, Ionian University, Greece

Received: date / Accepted: date

Abstract For decades, code transformations have been a vi-
tal open problem in the field of system security, especially
for cases like malware mutation engines that generate se-
mantically equivalent forms of given malicious payloads.
While there are abundant works on malware and on mal-
ware phylogenies classification and detection in general, the
fundamental principles about malicious transformations to
evade detection have been neglected. In the present work,
we introduce a mutation engine, named [m]allotROPism, to
generate malicious code deviations with equivalent seman-
tics from a static-analysis point of view. To achieve this,
we reduce the problem of generating semantically equiva-
lent solutions of given assembly code into a decision prob-
lem, and we solve it with the aid of satisfiability modulo
theories. Moreover, we leverage return-oriented program-
ming techniques to alter the traditional execution control
flow from text to stack memory segment. We have imple-
mented our proposed mutation engine and evaluated its de-
tection evasion capabilities. Results show that so far, our
approach is undetectable against popular free and commer-
cial anti-malware products. We release the implementation
of [m]allotROPism as open source. Our intention is to pro-
vide a method to generate malware families for experimental
purposes and inspire further state-of-the-art research in the
field of malware analysis.

1 Introduction

In the area of software exploitation, Return Oriented Pro-
gramming (ROP), proposed by Shacham [1], gained in-
creased attention during the late 2000s as an advanced

?Thanks to the title
aclyvas@unipi.gr
bdadoyan@ionio.gr
cxenakis@unipi.gr

stack smashing method that could bypass a variety of
malicious code execution prevention mechanisms (i.e.,
Write⊕eXecute). In principle, ROP is a rediscovery of
threaded code in which programs typically consist of a chain
of addresses in the stack pointing to code chunks in the at-
tacked binary (or its loaded libraries) each of them ending
with a return assembly instruction. These borrowed code
chunks are called gadgets and their "return" is, in fact, a call
to the next gadget in the chain. Nowadays, the majority of
exploit code at some point use ROP techniques.

A discovered zero-day vulnerability, along with its re-
lated exploit code can be sold in the Dark web for a hefty
price tag [2]. Another profitable activity in the Dark web is
malware development. The increased number of attacks and,
above all, the professionalization of the techniques used by
cybercriminals’, have been at the root of the exponential pro-
liferation of malware. In 2017, up to 285,000 new malware
samples per day were registered, the highest number ever
observed [3]. Despite the improvement of antivirus soft-
ware, sophisticated malware uses advanced evasion tech-
niques to bypass detection points. One of the most advanced
techniques for antivirus evasion is metamorphism. A meta-
morphic code carries a mutation engine, in order to generate
new species that share the same semantics using different
instructions. While there is an abundance of available re-
searches on malware and on malware phylogenies classifica-
tion and detection in general, there is no systematic research
of metamorphic engines and code transformation techniques
that generate semantically equivalent forms of given mali-
cious payloads.

This paper blends techniques from two different re-
search areas, namely malware development and software
exploitation, to design a mutation engine, which we call



2

[m]allotROPism1. More specifically, our mutation engine
is capable of generating semantically equivalent variations
of an input malware in an automated manner. To achieve
this, we reduce the problem of generating semantically
equivalent solutions of given assembly code into a deci-
sion problem, and we solve it with the aid of Satisfiabil-
ity Modulo Theories (SMT). Moreover, we leverage ROP
techniques, not for its initial purpose (i.e., software ex-
ploitation), but for its ability to alter the execution control
flow from Text to Stack Memory Segment. To this
end, [m]allotROPism automatically transforms any given
assembly shellcode to its equivalent ROP representation.
The proposed mutation engine fulfills all the requirements
of metamorphism, namely code substitution, register swap,
garbage insertion, and code flow diffusion. In this way,
[m]allotROPism can be considered a principled approach
to metamorphism. Finally, we have implemented our mu-
tation engine to evaluate it against anti-malware products.
Results show that so far, our approach is undetectable by
both commercial and free antivirus software. To the best of
our knowledge, [m]allotROPism is the first work that com-
bines SMT solver and ROP transformations in order to ful-
fill all the metamorphic characteristics without imposing re-
strictions. [m]allotROPism currently can handle only ma-
cOS platform’s shellcodes. The reason why we chose the
macOS platform is because its shellcodes strike a balance
between the intrinsical simplicity of Unix-based shellcodes
and the much more sophisticated shellcodes of Windows
systems.

To summarise, the contributions of this work are:

– We propose a metamorphic engine that generates all the
semantically equivalent ROP representations as in Sec-
tion 6.

– We implement and evaluate our metamorphic engine
against anti-malware products

– We make our prototype and the results2 of our empirical
analysis publicly available for experimental verification.

The rest of this paper is structured as follows: Section 2
provides an overview of the related work, while Section 3
provides all the needed background information related to
our approach. Section 4 analyses the motivation of this work
and provides a high-level overview of [m]allotROPism fun-
ctionality. Section 5 elaborates on the [m]allotROPism mu-
tation engine and its modules. Section 6 presents the results
of our experimental evaluation and performs a comparative
analysis with the related work as well as discusses possible
limitations of our approach. Finally, Section 7 concludes the
article.

1. In chemistry, the ability of an element to exist in more than one
physical form without change of state is called allotropism
2https://gitlab.ds.unipi.gr/
systems-security-laboratory/mallotropism

2 Related Work

A significant amount of work has focus on software ex-
ploitation and malware analysis (development or detection).
Here we cover only the most recent and relevant works.
Software exploitation using ROP. Schwartz et al. [4] de-
veloped an exploit hardening system named Q to auto-
mate the generation of Return Oriented Programming gad-
gets and enhance exploit payloads. In their work, they eval-
uated the existing code re-usage mitigation mechanisms
(Write⊕eXecute - W⊕X, Address Space Layout Random-
ization - ASLR). Their methodology is divided into sev-
eral steps to fulfill its purpose. In the initial step, the user
provides malicious payload that she/he wants to execute.
This payload is described in Q’s high-level language, named
QooL. In the second step, Q discovers the necessary gadgets
(to perform the operations of the malicious payload of the
previous step) in a given benign program with the aid of
semantic analysis. At the next phase, Q performs gadget as-
signment, where the gadgets are chained correctly between
them. Finally, Q prints out the exploit’s payload bytes.

Moreover, the work by Dullien et al. [5] proposes an in-
termediate language (IL) together with a set of algorithms
to automatically find ROP gadgets. Using the IL, the pro-
posed gadget-discovery algorithms are not limited to a spe-
cific architecture. This paper is one of the very few works
that consider ROP gadget discovery on ARM and RISC ar-
chitectures, while the majority of the related work focuses
on x86 and x64 architectures.

While the traditional use of ROP is software exploita-
tion (i.e., bypass non-executable stack and heap), there are
some previous works that have proposed ROP for benign
purposes. For example, Ma et al. [6] propose ROP for soft-
ware watermarking. The proposed ROP-based watermark-
ing is able to transform watermarking code into ROP gad-
gets and build them in the data region. Once triggered using
a secret message, the pre-constructed ROP execution will re-
cover the hidden watermark message. The proposed method
ensures that the watermarked program does not have an ex-
plicit code stream that belongs exclusively to watermarking.
Instead, the authors use operating system libraries to borrow
the ROP gadgets, preventing detection by software analy-
sis. Moreover, RopSteg [7] has been proposed for program
steganography. The latter is a variation of software obfus-
cation but it differs from it since in program steganogra-
phy the instructions are hidden instead of being transformed.
RopSteg achieves the protection of selected code by gener-
ating equivalent ROP gadgets and blending them into the
executable. Finally, Mu et al. [8] propose ROPOB, a code
transformation technique to obfuscate control flows using
ROP. The main contribution of ROPOB is that due to the
use of ROP to complete control flow transfer, static reverse
engineering methods cannot discover the real control flow,

https://gitlab.ds.unipi.gr/systems-security-laboratory/mallotropism
https://gitlab.ds.unipi.gr/systems-security-laboratory/mallotropism


3

even though they can disassemble software correctly. Al-
though the authors of all the aforementioned works have
implemented their proposed methods to evaluate their effec-
tiveness, none of them are available publicly on the internet
(i.e., source code or in the form of an executable).

In a more recent work Weidler et al. [9] leverage the
ROP technique to present arbitrary code execution attacks
against Internet of Things (IoT) devices. The authors in their
work showed that even small sections of executable code are
enough to create ROP gadgets that can erase and reprogram
the flash memory of an embedded device. They concluded
that the practice of loading the on-chip ROM with peripheral
driver libraries and other potentially unused code makes it a
prime target for ROP attacks.

Malware development or detection. Mohan et al. [10,
11] developed a metamorphic obfuscator called Franken-
stein, which is able to reassemble a given malware with
code fragments entirely from other benign programs. Au-
thors’ motivation was the creation of malware variations
from benign pieces of randomly selected binaries residing in
a system. Their goal is to avoid Signature Matching (syntax–
based heuristics) detection. They reduce the problem of gen-
erating mutations into a searching problem. Their proposed
method is able to search for segments of code found in be-
nign binaries and compare them semantically with the given
malicious instructions. Finally, Frankenstein performs suit-
able code arrangements to construct the final payload.

In the same direction as Frankenstein, Poulios et al. [12]
use Return Oriented Programming (ROP) in order to merge
malicious shellcodes in return-oriented form into benign
programs. ROPInjector takes a shellcode and a benign bi-
nary as input which is going to be trojanized. Technically
the proposed method can find semantically-equivalent ROP
gadgets and compare them with the given shellcode assem-
bly commands. If the step of the gadget evaluation fails,
ROPInjector is able to inject all the needed code left in Re-
turn Oriented Programming form by extending the Text
Segment of the benign binary. The purpose of that work
was to hide malware within a benign program (trojanization)
and evade antivirus detection by leveraging the transforma-
tion of shellcode into its ROP representation.

Regarding malware detection, a recent method named
BinSim [13] works almost in the opposite way from our
proposed [m]allotROPism. More specifically, BinSim is de-
signed for binary diffing analysis, in order to detect similar-
ities or differences across multiple code blocks. The main
idea of BinSim is first to do a sequence call alignment to
obtain a list of matched system call pairs. Next, starting
from the matched system call arguments, BinSim performs
a well-known technique for software debugging named dy-
namic backward slicing to identify instructions that affect
the argument both directly and indirectly. For each produced
slice, symbolic formulates, which capture the data and con-

trol flow, are extracted. Finally, BinSim uses an SMT solver
to verify whether two symbolic formulas are equivalent.

Code Synthesis. Jha et al. [14] define the concept of
Oracle-based software synthesis where loop-free code seg-
ments can be generated automatically with the aid of Satisfi-
ability Modulo Theories (SMT) solver. The outcome of their
proposed method was the development of the oracle-guided
synthesis framework named Brahma, which leverages SMT
solvers in two ways. At the initial step, Brahma starts from a
random value to build the equivalent code segment with the
aid of SMT solvers. In the following step, from the random
value that a variable holds they feed the SMT solver with
the desired program and the variable that holds the random
value of initial step to define the exact value that they dif-
fer. Then from the distinguishing value, they feed the SMT
solver to generate the code snippet that is capable to cause
the change from the random value to the distinguishing one.
The above-mentioned steps are repeated until the generated
code is equivalent to the desired one. The authors in their
research used Brahma to successfully deobfuscate segments
of existing malware code due to the fact that from simpli-
fied code snippets that had been generated by their proposed
method they could understand what the malicious code was
programmed to do.

In the context of non-academic work, Rolles [15] intro-
duced Synesthesia a framework for creating machine code
programs that fulfill a specific given encoding. Synesthesia
3 leverages SMT solvers in order to generate shellcodes un-
der encoding restrictions. Synesthesia’s inputs are a speci-
fication of the desired functionality of shellcode and spec-
ifications of allowable encodings. Synesthesia can be used
for the elimination of unwanted opcodes that contain NULL
bytes that interrupt the execution of shellcodes or decrease
the size of payloads in order to fit in corrupted Stack Seg-
ment memory. Synesthesia is a collection of Yices [16] (an
SMT solver language) scripts.

In the same direction as Brahma [14], Blazytko et
al. [17] focused their research on malware deobfuscation.
They proposed a generic approach for trace simplification
based on program synthesis with the aid of SMT solvers
and emulation guided by Monte Carlo Tree Search (MCTS)
to obtain the semantics of different kinds of obfuscated
code. They implement a prototype of their proposed method
named Syntia4. Based on I/O samples from assembly code
as input, Syntia can apply MCTS-based program synthesis
to compute a simplified expression that represents a deob-
fuscated version of the input. Syntia initially analyzes as-
sembly code by utilizing a disassembler then it uses the
SMT solver for expression simplification. Syntia expects
from the user a memory dump and a start and an end ad-
dress as input. Then, it emulates the program and outputs

3https://github.com/RolfRolles/SynesthesiaYS
4https://github.com/RUB-SysSec/syntia

https://github.com/RolfRolles/SynesthesiaYS
https://github.com/RUB-SysSec/syntia


4

the instruction trace. Given this trace, the user can define its
own rules for trace dissection. Otherwise, Syntia dissects the
trace at indirect control transfers. Additionally, the user has
to decide if register and/or memory locations are used as in-
puts/outputs and how many I/O pairs shall be sampled. Syn-
tia traces register and memory modifications in each trace
window, derives the inputs and outputs, and generates I/O
pairs by random sampling. Finally, Syntia was tested against
ROP gadgets, and it was able to synthesize their semantics
of ROP gadgets with very high precision.

3 Preliminaries

3.1 Return Oriented Programming (ROP)

ROP [1] is a technique that enables attackers to perform
malicious computing operations without injecting arbitrary
code into the address space of the target process. The
main motivation behind ROP is to bypass the restriction
of code execution prevention mechanism (also known as
Write⊕eXecute). ROP is Turing complete meaning that it
can perform any possible computation in a given instruc-
tion set (x86, x64, ARM, MIPS). In software–based at-
tacks, ROP takes place after the attacker succeeds in hijack-
ing the execution control of a program (typically through a
buffer overflow). In particular, after controlling the instruc-
tion pointer register, an attacker executes short sequences
of instructions that end with the ret instruction known as
ROP gadgets. These instructions are found inside the binary
image or the loaded libraries. In most instances of software–
based attacks, the execution of the sequence of the ROP gad-
gets (also known as ROP chain) aims at calling an API (in
Windows–based systems) or a system call (in Linux based
systems) to flag the stack or the heap segment as executable.
In this way, the attacker can execute the main functionality
of the malware (also known as shellcode). Selecting the ROP
gadgets and building the ROP chain automatically (or even
manually), in order to execute an arbitrary computation is
a challenging task. To exemplify, gadgets that perform con-
ditional/unconditional jumps may break the correct order of
ROP chain execution. Gadgets that insert or remove values
from the Stack Segment may disrupt the sequential execu-
tion of the ROP chain. Despite the difficulties of building a
ROP chain, several research works have achieved to semi-
automate the process of building a ROP chain as further dis-
cussed in Section 6.3. On the defensive side, security mech-
anisms such as ASLR [18], control flow integrity protec-
tion [19], etc. have significantly raised the bar for attackers,
since they (i.e., the attackers) must also bypass these defen-
sive mechanisms [20].

3.2 Satisfiability Modulo Theories (SMT)

Boolean Satisfiability Problem (SAT) is a decidable problem
proven to be NP-complete [21]. Technically, is the problem
of determining if a set of variables for a given Boolean for-
mula can be persistently expressed by the values True (sat-
isfiable) or False (unsatisfiable). In other words, it is able
to decide whether there exists a satisfying solution for a
given well-formed formula in propositional logic. Satisfia-
bility modulo theories (SMT) extend boolean satisfiability
(SAT) by adding equality reasoning, arithmetic, bit-vectors,
arrays, quantifiers, and other useful first-order theories. An
SMT solver is a tool for deciding the satisfiability or the va-
lidity of formulas in these theories [22].

SMT solvers have already been used in a variety of sci-
entific domains of informatics. Park et al. [23] in their re-
search presented a formal verification tool for the Ethereum
cryptocurrency Virtual Machine (EVM) bytecode with the
aid of SMT solvers. Vanhoef and Piessens [24] combined an
SMT solver with symbolic execution in order to efficiently
simulate cryptographic primitives. Using this approach, they
were able to detect several flaws in implementations of the
WPA2 4-way handshake. Using SMT solvers is not a new
technique in software security. In particular, as analyzed by
Vanegue et al. [25] it has found applications in exploita-
tion development and software security. Mostly, they have
been used to discover vulnerabilities and to evaluate ROP
gadgets, in order to check for an equivalent ROP gadget of
given shellcode instructions. The motivation of the related
researches [4, 5] is to provide full ROP compilers able to
automatically identify ROP gadgets and then combine them
to create a ROP chain that is equivalent to the given exploit
code.

Moreover, as we already mentioned in the previous
section code synthesis [26] can be achieved with the aid
of SMT solvers. Brahma [14] and Syntia [17] can ef-
ficiently synthesize programs for software deobfuscation
while Synesthisia [15] leverages code synthesis to es-
cape unwanted encodings from an exploitation development
standpoint. We analyze the technical insights of Brahma,
Syntia and Synesthisia in detail in our comparative analy-
sis in Section 6.3.

In our research, we leverage SMT solver to transform
given assembly operations. Let’s assume a subset of the x86-
x64 instruction set with only add, sub and mov commands
and rax, rbx as it’s only registers. Let’s assume now the in-
put command add rax, 0x2 where rbx is equal to 0x7
and rax to 0x5. We express the operation in its mathemati-
cal representation as rax = rax+0x2. At that point, we have
programmed the SMT solver to get the mathematical rep-
resentation the value of the affected register (rax) before
(0x5) and after the execution(0x7) in order to generate all
the possible operation of any operand, address, register or



5

numerical value over the affected register (rax) that is go-
ing to set it equal to 0x7 after the execution. Commands
such mov rax, 0x7, mov rax, rbx are equivalent to
the initial one in order to set rax equal to 0x7 after the
execution.

4 Motivation and Overview

4.1 Motivation

Modern malware has tried to use various mutation tech-
niques to avoid detection. For instance, polymorphism is the
use of encryption to hide the malicious code, while botnet
infections can update their code through command and con-
trol channels. Unsurprisingly, anti-malware products have
developed an array of detection technologies to identify mal-
ware despite mutations. One approach is semantic detection,
which classifies programs as malicious or benign based on
their behavior rather than their syntax. However, semantic
detection is ineffective against previously unseen behaviors,
such as zero-days. Moreover, it cannot reliably detect time
bombs, which unleash their malicious behaviors only after
days or weeks of waiting; and is impractical to apply in-
discriminately to the millions of software programs on large
networks. As a result, state-of-the-art malware detection still
relies heavily upon syntax-based heuristics (i.e., signature
matching) as a first step toward identifying suspicious pro-
grams worthy of greater analysis. That is, in polymorphic
malware the original code is revealed at runtime; hence they
can be detected by analyzing the memory, while command
and control updating is potentially detectable using signa-
tures at the network level (i.e., intrusion detection systems).

On the other hand, metamorphic malware does not share
these limitations. Metamorphic engines can be defined as
systems that are able to provide code reforms (mutations)
of malicious prototype payloads with equivalent semantics
[27]. The purpose of a mutation engine is the generation of
malware variations that cannot be discovered by signature–
based antivirus. According to O’Kane et al. [28] metamor-
phic engines usually perform one or more of the following
transformations:

1. Code Substitution. Where opcodes substitute initial
equivalent opcodes able to perform the same operations.

2. Garbage Insertion. Where benign instructions are in-
serted such as no operations in the initial malicious pay-
load.

3. Register Swapping. Where registers have been
swapped between malware variations.

4. Control Flow Diffusion. Where malware developers
insert subroutines to reorder the call sequence with the
aid of jumps and calls.

In theory, metamorphic malware may be undetectable.
However, real-world malware is typically armed with only
a limited set of mutations (due to limited code transforma-
tions). Once this set is known, it can be automatically re-
versed or normalized to detect all variants. Moreover, mal-
ware can partially achieve metamorphism by fulfilling one
of the above four characteristics not necessarily all of them
at the same time. This means that the generated variants
may not have large deviations and by using statistical anal-
ysis, signatures can be extracted. To the best of knowledge,
[m]allotROPism is the first work that fulfills all the above–
mentioned metamorphic characteristics without imposing
restrictions. In particular, [m]allotROPism employs an SMT
solver to generate equivalent forms of malware based on a
given assembly payload to achieve Code Substitution and
Garbage Insertion. Moreover, using ROP it achieves Con-
trol Flow Diffusion and Register Swapping characteristics.
Thus, [m]allotROPism can be considered a principled ap-
proach to metamorphism.

4.2 Architecture

In this section, we provide a high-level overview of
[m]allotROPism. In the present research, we focus on a spe-
cific category of malicious software called shellcode5. Ac-
cording to Spafford [29], the shellcode is defined as mali-
cious software that is capable of establishing TCP (Trans-
mission Control Protocol) connections across an infected
system and a system controlled by an attacker. This tech-
nique gives the intruder the ability to remotely execute OS
(Operating System) commands on the infected system. As
shown in Figure 1, [m]allotROPism takes as an input one
shellcode and outputs all possible variations of ROP based
shellcodes. The metamorphic engine of [m]allotROPism
consists of 5 distinct modules:

– Basic-Block Calculation. The initial shellcode for
which we want to generate the ROP equivalent varia-
tions is processed and divided into smaller code sections
named basic blocks (Pseudocode 1 Line 2). As we an-
alyze below, these basic blocks allow the creation of
equivalent ROP transformations.

– Command Emulation. This module executes the com-
mands inside the basic blocks from the previous Basic
Block Calculation. The result of every operation after
the emulation is saved in an array called Machine State
(Pseudocode 1 Line 4 to Line 8). In particular, a machine
state holds the register values after every command em-
ulation.

– SMT Solver. Now, the output of command emulation
module (i.e., machine state) becomes the input of the

5Introduced initially to execute Unix Shell commands and it is usu-
ally written in machine code.



6

SMT solver module (Pseudocode 1 Line 12). More
specifically, we feed the SMT solver with two consec-
utive machine states (i.e., before and after the execution
of an instruction), and the solver outputs equivalent in-
structions. To achieve this, for each assembly instruction
we have developed a corresponding mapping to an SMT
formula. It is important to mention that the SMT solver
is not limited only to output one solution (i.e., equivalent
instruction) for a given instruction, but it is also capable
to generate a combination of instructions as a solution
(i.e., it can produce the results of any transition from one
machine state to another with a variety of equivalent as-
sembly operations). As we will analyze in section 5.3,
the SMT solver is the responsible module that fulfills
Code Substitution and Garbage Insertion requirements
of metamorphism.

– Validation. The SMT solver outputs equivalent com-
mands (Pseudocode 1 Line 13 to Line 19) that satisfy
the mathematical expressions, but it is unaware of the
actual memory operations. This means it can generate
results that are not valid. Therefore, in order to elimi-
nate side effects produced by flag registers and mem-
ory operations, we emulate (Pseudocode 1 Line 15) ev-
ery possible solution of the previous module (i.e., SMT
Solver), in order to discard possible instructions that vi-
olate memory-related operations.

– ROP Transformation. This module takes as input all
the validated equivalent instructions (from the valida-
tion module) as well as the basic blocks (from the ba-
sic blocks calculation module) and outputs ROP shell-
codes (Pseudocode 1 Line 23), which are all variants of
the initial shellcode. More specifically, this module is
able to transform all the basic blocks with all the vari-
ations produced by the SMT solver module into ROP
gadgets. Next, the generated gadgets are chained and
all the possible ROP representations of the input shell-
code are produced. As we analyze in section 5.5, due to
the ROP Transformation module, [m]allotROPism ful-
fills the Register Swapping and Control Flow Diffusion
requirements for metamorphism.

5 Mutation Engine

In this section, we analyze in detail the mutation engine
modules of [m]allotROPism. Our aim is to combine our
analysis with step-by-step examples for a better understand-
ing of the presented techniques. To this end, we will use a
code snippet (see Listing 1) from a real-world x64 shellcode
for macOS that performs a reverse TCP connection between
an infected and an attacker-controlled system (see Appendix
for the full code of the considered shellcode). As we will an-

5)ROP 

Transformation 
4)Validation 

3)SMT 

Solver 

1)Basic Blocks 

Calculation
Original 

Shellcode

2)Command 

Emulation

Mutation Engine

Equivalent RoP 

Shellcodes

Machine 

States

Basic Blocks

+ 

Clobber List

Basic Blocks

+

Clobber List

Equivalent 

Solutions

Validated

Solutions

Fig. 1: [m]allotROPism High–Level Overview.

alyze in section 6.2, the same shellcode will be used for our
experiments.

5.1 Basic-Block Calculation.

In the initial step a given shellcode is processed and divided
into basic blocks. This process ensures that specific assem-
bly operations (such as syscall, pop-push, cmp, jmps, call
and memory operations over registers) unsuitable to be ex-
pressed as ROP equivalent operations will cause no disrup-
tion or inconsistencies during the ROP transformation. The
rules for the creation of the basic block is as follows:

1. A separate block is required for syscall instructions.
2. A separate block is required for Push-Pop instructions.
3. A separate block is required when instructions belonging

to a function are executed.
4. Branch instructions (e.g., cmp, je, call) are not

included in blocks.
5. All other instructions are grouped into one block (maxi-

mum number of instructions per block is 6).

Moreover, this module for each basic block calculates the
so-called Clobber List. The latter holds the registers that
change their value by the instructions of the block. As we
analyze below, using the Clobber List, we are able to iden-
tify all the free-to-use registers for each basic block, and per-
form the final transformation into ROP representation.

To exemplify, the code in Listing 1 is divided into ba-
sic blocks and the Clobber List is computed (see Listing 2).
In particular, Block 1 is created for the first instruction xor
rsi, rsi, while Block 2 is created for the instructions
mov rax, r8 and mov rdi, r12, since a new fun-
ction starts from line 2 in listing 1. Next, a new block (i.e.,
Block 3) is created for the syscall instruction. Block 4
includes only the inc rsi instruction, since it is the last
command of the function. Finally, the last two instructions
(i.e., sub r8, 0x1f and mov rax, r8) are included



7

1 xor rsi, rsi
2 function:
3 mov rax, r8
4 mov rdi, r12
5 syscall
6 cmp rsi, 0x2
7 inc rsi
8 jbe function
9 sub r8,0x1f

10 mov rax, r8 �
Listing 1: Code Example.

1 Block 1:{
2 xor rsi, rsi
3 }
4 Clobber List 1: {rsi}
5 function:
6 Block 2:{
7 mov rax, r8
8 mov rdi, r12
9 }

10 Clobber List 2: {rax, rdi}
11 Block 3:{
12 syscall
13 }
14 Clobber List 3: {rax, r11}
15 cmp rsi, 0x2
16 Block 4:{
17 inc rsi
18 }
19 Clobber List 4: {rsi}
20 jbe function
21 Block 5:{
22 sub r8,0x1f
23 mov rax, r8
24 }
25 Clobber List 5: {r8, rax} �

Listing 2: Basic Blocks and their corresponding Clobber
Lists.

in Block 5. Note that the commands cmp rsi, 0x2 and
jbe function are not included into blocks since they are
branch instructions. Also, the computed Clobber Lists in-
clude the registers that change their values inside the basic
blocks. For instance, in Block 2, the corresponding Clob-
ber List includes the registers rax and rdi, since these two
registers will be modified by the instructions of Block 2.

5.2 Command Emulation

The first step of the emulation module is to set all regis-
ters to zero because all the registers (except stack regis-

ters and instruction register) holds unknown to us values.
We chose to initialize them to zero because they are all
available for use at the beginning of every program execu-
tion. After the initialization of registers, every instruction
in each block is executed one after another. Whereas the
same sequential execution applies to instructions across ba-
sic blocks. The command emulation module stores the result
of each execution (i.e., register values) into an array called
Machine State. Table 1 shows the results of the emulation
of the basic blocks for the considered example (see Listing
2). Please note that for simplicity reasons we include in Ta-
ble 1 only the registers that are modified in our example (i.e.,
rax, rsi, rdi, r8 ). However, the command emu-
lation module stores the values of all registers into the ma-
chine state. Also, note in the initial state 0, not all registers
have value to 0x0, because the considered example is only
a code snippet of a shellcode; thus the first command (i.e.,
xor rsi, rsi) is not the first one emulated, but we de-
fined it as initial state 0 for our considered example. Apart
from the machine state, the command emulation stores also
the execution flow trace (see the third column of Table 1).
That is, it records the sequence of the executed instructions
during emulation taking into account conditional branches,
loops, and function calls.

To better understand the notion of Machine States as de-
picted in Table 1 consider the following example. For the
transition from state 1 to 2, we observe that the register
rax changed its value from 0x2000062 to 0x200005a.
This occurred due to the fact that the emulated instruc-
tion was mov rax, r8. Thus, after this command, the
value of rax should be equal to the value of r8, which is
0x200005a in state 1.

5.3 SMT Solver

After the successful emulation of the shellcode, the SMT
solver is responsible for calculating all the possible equiv-
alent assembly operations that produce the desired result in
the left-handed register, which is defined by its position in
the Machine State. The mutation engine is not limited to
one-to-one code transformations but is also capable to pro-
duce the results of any transition from one state to another
with a variety of equivalent assembly operations. In order to
reduce the complexity of the proposed examples, we chose
to present only one to one code transformations.

As we mentioned in 4.1, [m]allotROPism fulfills the
four metamorphic malware requirements. Based on the SMT
solver we achieve Code Substitution and Garbage
Insertion characteristics. Code Substitution is per-
formed by the SMT solver, which will provide a set of
equivalent commands (that can be used for Code Substi-
tution). To elaborate more, we consider again the provided
example. For instance, for the case of transition from state



8

Machine
State

Emulated
Command

Trace execution
flow of Listing 1

rax rsi rdi r8

0 - - 0x2000062 0x0 0x3 0x200005a
1 xor rsi, rsi Line 1 0x2000062 0x0 0x3 0x200005a
2 mov rax, r8 Line 2 (Loop 1) 0x200005a 0x0 0x3 0x200005a
3 mov rdi, r12 Line 3 (Loop 1) 0x200005a 0x0 0x3 0x200005a
4 syscall Line 4 (Loop 1) 0x0 0x0 0x3 0x200005a
5 inc rsi Line 5 (Loop 1) 0x0 0x1 0x3 0x200005a
6 mov rax, r8 Line 2 (Loop 2) 0x200005a 0x1 0x3 0x200005a
7 mov rdi, r12 Line 3 (Loop 2) 0x200005a 0x1 0x3 0x200005a
8 syscall Line 4 (Loop 2) 0x1 0x1 0x3 0x200005a
9 inc rsi Line 5 (Loop 2) 0x1 0x2 0x3 0x200005a
10 mov rax, r8 Line 2 (Loop 3) 0x200005a 0x2 0x3 0x200005a
11 mov rdi, r12 Line 3 (Loop 3) 0x200005a 0x2 0x3 0x200005a
12 syscall Line 4 (Loop 3) 0x2 0x2 0x3 0x200005a
13 inc rsi Line 5 (Loop 3) 0x2 0x3 0x3 0x200005a
14 sub r8, 0x1f Line 6 0x2 0x3 0x3 0x200003b
15 mov rax, r8 Line 7 0x200003b 0x3 0x3 0x200003b

Table 1: Machine States of the considered code example (bold text indicates a changed value)

13 to state 14 based on table 1, the solver will try to find
all the possible solutions that set register r8 from value
0x200005a to 0x200003b. In this case, the possible
assembly operation is not only based on arithmetic cal-
culations but also based on the values of the other reg-
isters if that is possible. Thus, possible solutions that set
register r8 equal to 0x200003b are sub r8, 0x1f,
sub r8, 0x0ffffffffffffffe1, xor r8, 0x61
and mov r8, 0x200003b (see Table 2).

Moreover, because of the SMT solver our method is able
to insert garbage into generated mutations in terms of no-
operations in explicit cases where the execution of com-
mands does not affect the value of any register. For instance,
in transition from the state 0 to state 1, which the instruc-
tion xor rsi, rsi is emulated (see Table 1), all values
remain equal. In this case, the SMT solver will produce all
the solutions that do not change the values of the registers in
the Machine State for the transition from state 0 to state 1.
Thus, some of the generated equivalent results (which in our
context are considered garbage instructions) are sub rsi,
r13 (since both rsi and r13 are equal to zero, the instruc-
tion sub rsi, r13 will not change rsi) or xor rsi,
r13 (see Table 2).

As a final note, the SMT solver may not generate equiv-
alent instructions for every machine state transition. For in-
stance, for machine state transition from state 4 to 5 (see
Table 1), the solver was not able to find an equivalent in-
struction for the command inc rsi (see Table 2). Note
that the instruction add is different from inc, because the
former modifies the Carry flag while the latter does not, and
therefore they cannot be used interchangeably. The same is
also true for very specific commands, such as syscall that
do not have equivalent commands.

5.4 Validation

This module can be divided into phase I and phase II val-
idation. In phase I, the module will validate the equivalent
instructions generated by the SMT solver, in order to ensure
that instructions that use memory values will be discarded.
Moreover, in phase II the module will actually compile and
run the transformed shellcodes to verify that the transforma-
tions do not cause unexpected errors caused by flag registers,
memory miscalculations, etc.

More specifically, regarding phase I validation, the main
goal is to ensure that that commands (generated by the
SMT solver) with arithmetic operations over stack regis-
ters or values will be discarded. The SMT solver gener-
ates such instructions because it is unaware of the mem-
ory randomization, which prohibits the use of these instruc-
tions. For instance, lets assume that rsp holds a random
memory value (i.e., RandMemVal) and the next command
is mov rax, rsp. In this case, the solver may generate
the following possible equivalent instruction: mov rax,
RandMemVal. For the solver, the above-mentioned com-
mand is indeed correct and will set the register rax to
hold the same memory value with rsp. However, the value
of RandMemVal is not constant; it is modified each time
the shellcode is re-executed, due to address randomization.
Thus, the command mov rax, RandMemVal will not be
valid for subsequent executions of the shellcode and will be
discarded.

After phase I, the phase II validation takes place to en-
sure that side effects caused by flag registers, miscalcula-
tions in the memory and other factors will not cause un-
expected behavior. In this phase, the validation module re-
places the first instruction of the initial shellcode with the



9

corresponding equivalent assembly commands generated by
the SMT solver. Every uniquely transformed shellcode is
compiled and executed. For each non-successful execution
of the transformed shellcode, the validation module discards
the equivalent assembly command that was used in the shell-
code. When all the possible solutions for the first instruction
of the shellcode are tested, the validation module continues
with the next instruction of the shellcode. This procedure is
repeated until all possible solutions for all shellcode instruc-
tions are validated.

5.5 ROP Transformation

The last module of the metamorphic engine takes as input
the verified instructions as well as the basic blocks and the
corresponding Clobber Lists (generated by the basic block
calculation module) and taking into account the execution
trace flow, generates the ROP gadgets. As we have men-
tioned, the latter are instructions that end with the command
ret. Thus, the ROP Transformation module appends the
instruction ret at the end of every block to create the ROP
gadgets.

Although the conversion of blocks to ROP gadgets is
straightforward (i.e., append a ret instruction), special care
should be taken to cope with loops (e.g, FOR/WHILE state-
ments) and conditional branches (e.g., IF statements). ROP
is Turing Complete and by this we fully take advantage of its
capabilities to deal with loops and conditional branches. To
this end, we define a number of Control Flow Maintenance
gadgets, which are special ROP gadgets that are generated
by the ROP Transformation module, and that convert loops
and conditional branches into ROP form. Evidently, the reg-
isters that will be used in these gadgets should be free, in
order not to affect the rest of the ROP execution. We de-
fine these registers as Control Flow Maintenance registers.
Since for each basic block, the used registers are collected
in the Clobber list (see section 5.1), we can easily identify
the free-to-use registers.

To elaborate more, in order to convert loops and condi-
tional branches into ROP form, we need three Control Flow
Maintenance registers to perform a loop and two Control
Flow Maintenance registers to perform a conditional branch.
In the following, we analyze with our considered example
why we need three free registers for the creation of ROP
based loops (the logic for dealing with conditional branches
and the need of two registers is similar and not analyzed).
First, let us recall the example of code Listing 1. We can
identify that in line 2 of Listing 1 there is a loop until line 8
where it ends. In the between there is the inner block (lines
3-7) of the loop and a condition check (in line 6) based on
the left side register rsi. From a basic blocks point of view
(see Listing 2), the step size is the Block 1, the inner loop’s

operations are the Blocks 2 and 3 and step change operation
is the Block 4.

Now we will convert the above-mentioned loop to its
ROP counterpart (see Listing 3). In this example, we do not
consider any code substitutions. The first gadget (i.e., Gad-
get 1) is created simply by appending in Block 1 the ret
instruction. The next three gadgets (i.e., Gadget 2, 3 and 4)
are Control Flow Maintenance gadgets and we need three
free registers to create them. Specifically, we need: i) one
register to hold how many gadgets the loop is going to slide
back (in our example 80 bytes). In the considered example
we select rbx and we initialize its value in the Control Flow
Maintenance Gadget 2; ii) one register that holds the upper
repetition bound. In our example we select r15 to be used
and we initialize it in Control Flow Maintenance Gadget 3;
iii) One register that is responsible for the branch execution
in the loop’s inner body. We select r14 and we initialize it
in Control Flow Maintenance Gadget 4.

After the sequential execution of the above–mentioned
gadgets the loop inner body is going to be executed for the
first time (i.e., Gadget 5 to Gadget 8, which are directly cre-
ated by Blocks 5 to 8 by appending the ret instruction).
The following gadgets are used to maintain the loop and
they are generated using the three same registers that we ini-
tialized previously (i.e., registers rbx, r15 and r14). In
particular, Gadget 9 is responsible to check if the step size
(rsi) has reached its upper bound by performing the oper-
ation xor r15, rsi. Then the complement of the upper
bound register (r15) is calculated by executing the oper-
ation neg r15. Gadget 10 performs the addition of r14
register and the carry flag which was set in the previous gad-
get, because of the negation of a positive number. Gadget
11 is responsible to calculate a negative number; thus, the
next gadget (Gadget 12) is not going to alter the value of the
register that holds the stack slides. Finally, Gadget 13 will
negate the register that holds the loop’s upper bound and
Gadget 14 will move the rsp registers 10 positions, which
means that the ROP execution will return in the Gadget 4.
In this way, we achieve to perform a ROP based loop. The
previous operation will be repeated until the rsi register is
going to be set in its upper bound limit. Note that Gadget 9
will set the result of zero in the register that holds the loop’s
upper bound and the negation over zero will not cause any
alterations of the register in the Gadget 10 nor the negation
over zero in the Gadget 11. Finally, Gadget 12 will set the
value zero in the register that holds the stack slides and Gad-
get 14 will perform subtraction over zero and the execution
will continue to Gadget 15, which is the ROP counterpart of
Block 5.

Finally, the ROP Transformation module pushes the ad-
dresses of the created gadgets into the stack to execute the
created ROP chain using the push or mov instructions. This
is a typical procedure for every ROP execution code [1].



10

1 Gadget 1:{xor rsi, rsi; ret;}
2 Gadget 2:{mov rbx, 80; ret;} ; Control Flow Maintenance

Gadget
3 Gadget 3:{mov r15, 0x3; ret;} ; Control Flow Maintenance

Gadget
4 Gadget 4:{xor r14, r14; ret;} ; Control Flow Maintenance

Gadget
5 Gadget 5:{mov rax, r8; ret;}
6 Gadget 6:{mov rdi, r12; ret;}
7 Gadget 7:{syscall; ret;}
8 Gadget 8:{inc rsi; ret;}
9 Gadget 9:{xor r15, rsi; neg r15; ret} ; Control Flow

Maintenance Gadget
10 Gadget 10:{adc r14, r14; ret;} ; Control Flow

Maintenance Gadget
11 Gadget 11:{neg r14; ret;} ; Control Flow Maintenance

Gadget
12 Gadget 12:{and rbx, r14; ret} ; Control Flow Maintenance

Gadget
13 Gadget 13:{neg r15; ret;} ; Control Flow Maintenance

Gadget
14 Gadget 14:{sub rsp, rbx; ret;} ; Control Flow

Maintenance Gadget
15 Gadget 15:{sub r8, 0x1f; mov rax, r8;} �

Listing 3: One Possible ROP Transformation Example.

Last but not least, due to this module (i.e., ROP Transfor-
mation) [m]allotROPism fulfills the other two metamorphic
malware characteristics. That is, we achieve Register Swap-
ping and Control Flow Diffusion properties (recall that us-
ing the SMT solver we have Code Substitution and Garbage
Insertion). More specifically, by selecting all the possible
permutations of free registers (for the generation of gad-
gets to maintain loops and conditional branches as it was
described above), we fulfill the Register Swapping require-
ment. For instance, in the considered example we selected
the set (rbx,r15,r14). These registers can be swapped
with another set such as (r14,rcx,r15). Moreover, by
generating ROP shellcodes from all the possible permuta-
tions of the generated gadgets we achieve the property of
Control Flow Diffusion. Note that this is possible because
the execution flow of ROP gadgets (also known as ROP
chain) is not sequential. As a matter of fact, it is well known
that the alignment of the ROP gadgets in the text section is
irrelevant to the actual execution flow. This happens because
in ROP, the role of the rip register is replaced by the rsp
register of the stack. This means that the actual execution
flow is based on how the memory addresses of the gadgets
are placed in the stack.

Algorithm 1 Mutation Engine
1: procedure MUTATIONENGINE(program)
2: basicBlocks := basicBlock(program)
3: clobberList := usedRegisters(basicBlocks)
4: state0 := [0,0, . . . ,Rand,Rand]
5: for all command ∈ program do
6: expretion := decode(command)
7: statei := emulate(expretion,statei−1)
8: machineStatei := machineState∪ (statei,statei−1)
9: end for

10: state′0 := [0,0, . . . ,Rand′,Rand′]
11: for all statePair ∈ machineState do
12: solutions := SMT (statePair)
13: substitutions := []
14: for all solution ∈ solutions do
15: state′i := emulate(solution,state′i−1)
16: if (statei = state′i)∩ (solution 6= expretion) then
17: substitutions := substitutions∪ encode(solution)
18: end if
19: end for
20: trans f ormations := trans f ormations∪ substitutioni
21: end for
22: for all trans f ormation ∈ trans f ormations do
23: mutations := mutations ∪

ROP(trans f ormation,basicBlocks,clobberList)
24: end for
25: end procedure

6 Evaluation

6.1 Generated Mutations

First, we derive equations that allow us to calculate the total
number of the generated equivalent ROP shellcodes. We ar-
gue that all equivalent ROP shellcodes are equal to the total
Code Permutations multiplied by the total number of Con-
trol Flow Diffusions multiplied by the total Register Swaps:

Total ROPShellcodes = |CodeSubtitutions|
×|Control FlowDi f f usions| × |Register Swaps|

(1)

The total number of Code Substitutions can be defined as all
the possible substitutions of all the equivalent commands for
each shellcode instruction:

|CodeSubtitutions|=
Shellcode lines

∏
i=1

|Solutionsi| (2)

where Solutionsi are all the verified equivalent instructions
for the specific command in line i of shellcode. The total
code control flow diffusions is all the possible permutations
of the produced ROP gadgets that belong in a ROP trans-
formed shellcode:

|Control FlowDi f f usions|= |Gadgets|! (3)

The total register swaps for one branch is all the possible
permutations of 3 registers (if the branch is a loop) or all the



11

Machine State Initial Command Code Substitutions
Solution 1 Solution 2 Solution 3

1 xor rsi, rsi sub rsi, r13 xor rsi, r13 and rsi, 0x0

2,6,10 mov rax, r8 - - -

3,7,11 mov rdi, r12 or rdi, rsi or rdi, r12 or rdi, 0x1

4,8,12 syscall - - -

5,9,13 inc rsi - - -

14 sub r8, 0x1f add r8, 0xffffffffffffffe1 xor r8, 0x61 mov r8, 0x200003b

15 mov rax, r8 or rax, r8 - -

Table 2: Examples of equivalent instructions generated by the SMT solver.

possible permutations of 2 registers (if the branch is a con-
ditional branch) from the set of the free to use registers (i.e.,
the ones that do not belong in the Clobber List. Assuming
that n is the number of free registers to be used in a branch,
the total number of register swaps S per branch is equal to:

S = n!
(n−b)! where b = {2,3} (4)

Thus, the total number of register swaps is equal to S multi-
plied by the number of total branches in the shellcode, that
is:

|Register Swaps| = S × |branches| (5)

6.2 Experimental Results

To evaluate the effectiveness of our proposed method we
have developed a prototype of the metamorphic engine us-
ing the Python programming language. Moreover, we have
utilized the Z3 solver [22] to express the SMT formulas and
derive their solutions. Our implementation is open-source
and free to download6. In our experiments, we used as input
a real–world shellcode (see Appendix), which part of it was
used throughout the paper to present [m]allotROPism mod-
ules in section 5. Recall that the shellcode targets macOS
x64 OS. It performs a reverse TCP connection giving an at-
tacker the ability to execute UNIX commands remotely on
an affected system. The chosen shellcode of the study con-
tains 39 lines of code. The reason why we chose for the eval-
uation a macOS shellcode is that it strikes a balance between
the intrinsical simplicity of Unix-based shellcodes and the
more sophisticated shellcodes of Windows systems. To the
best of our knowledge this is the first work that considers a
shellcode for the macOS system.

Our implementation was tested on an Intel Core i5 1.3
GHz CPU with 8 GB RAM. We used the nasm compiler
to produce the executables from the generated shellcodes in

6https://gitlab.ds.unipi.gr/
systems-security-laboratory/mallotropism

order to execute them. We have measured the required time
per generated output for a variety of given instructions. More
specifically, we have selected as input assembly code snip-
pets of various length (i.e., 1, 2 and 6 assembly instructions)
and operations (i.e., numerical, syscalls, and push/pop
instructions). Based on this code snippets, we measured the
time required for: i) emulation; ii) to generate equivalent
code substitutions of 1, 2, 3 and 4 commands (per assem-
bly instructions of the code snippet) using the SMT solver
module; iii) to generate equivalent ROP gadgets. In other
words, we measured the time to provide output the emu-
lation of the code snippets by the Validation module, the
SMT solver module and the ROP Transformation module
of [m]alltopROPism. The results of this performance analy-
sis are depicted in Table 3. One can deduce that the higher
number (from 1 to 4) of the computation of the equivalent
commands requires more time to compete. This can be jus-
tified due to the fact that the SMT solver attempts to gener-
ate all the possible equivalent commands for an instruction
based on the available registers and their values from previ-
ous states (if there are any). Additionally, the time needed
for the generation of gadgets depends on the number of
the given instructions (in our experiment the Code Snippet
Length).

Now we describe the approach that we followed to eval-
uate the metamorphic properties of [m]allotrROPism and
their effects on antivirus evasion. The first metamorphic
property is Code Substitution. Recall that code substitutions
is achieved by replacing the initial shellcode with the so-
lutions of the SMT solver module. In total, we considered
4 different shellcodes with different level of code substitu-
tions. That is the initial shellcode without any code modi-
fication, as well as 3 variants with different levels of code
substitutions. That is, for the variant 1 we considered code
substitutions for 6 out 39 lines of the initial shellcode, while
in variant 2 we considered 17 out of 39 lines code substitu-
tions. Variant 3 includes the maximum number of code sub-
stitutions that [m]allotROPism was able to achieve, which
was 22 out of 39 lines of the initial shellcode. The second

https://gitlab.ds.unipi.gr/systems-security-laboratory/mallotropism
https://gitlab.ds.unipi.gr/systems-security-laboratory/mallotropism


12

metamorphic requirement, which is Garbage Insertion, was
not considered in the experiments.

Next, we performed ROP transformations for the shell-
codes of our experiment. The third metamorphic require-
ment that we want to evaluate its effects on antivirus eva-
sion is Register Swapping. More specifically, the considered
shellcode includes a loop, due to the jump instruction in line
33 (see Appendix). For this reason, [m]allotROPism used
Control Flow Maintenance gadgets to handle this loop. As
we mentioned in section 5.5, we need three registers to con-
vert loops to ROP based loops (we defined these registers as
Control Flow Maintenance registers). For the experiments,
we considered two different sets. In the first one, we gener-
ated a shellcode that used the set (r14,r11,r15) to create
the ROP based loop and next, we swapped these registers
with the second set which was (rbx,r15,r14). In this
way, we achieve Register Swapping. Finally, the generated
gadgets can be permuted for the fourth and final metamor-
phic requirement, which is Control Flow Diffusion. In our
experiments, we used three different levels of diffusion: 0%
means no diffusion, 50% diffusion means that the half of
the generated gadgets were permuted, and 100% diffusion
means that all gadgets were permuted.

Moreover, we used VirusTotal to calculate the evasion
rate of the generated shellcodes during the different stages
of their transformations. At the time of writing the pa-
per, VirusTotal included 59 anti-malware products. Table 4
shows the evasion results. From Table 4, we can observe
that the initial shellcode was detected by 51.7% of the an-
tivirus products. By converting the initial shellcode to its
ROP equivalent with the first register set without any gad-
get permutation (i.e., 0%) the detection rate dropped to 0%.
This is an alarming result regarding the detection capabil-
ities of anti-malware products. By using the same register
set with gadget permutation equal to 50% and 100% the de-
tection rate remained 0%. By using the second register set
for swapping and for various gadget permutation levels, the
detection rate was always 0%. For variants 1,2 and 3 which
we use code substitution (11, 17 and 22 out of 39 lines re-
spectively), without ROP transformation the detection rate
was stable to 47.36%. On the other hand, using ROP trans-
formations the detection rate for the three variants dropped
to 0% with or without using gadget permutation or register
swapping.

6.3 Comparative Analysis

In this section, we provide a comparative analysis between
our implementation and related researches (see Table 5).
The work in [5] presents algorithms using an IL for gad-
get discovery but not for ROP compilation, in contrast to
[m]allotROPism which incorporates automatic ROP trans-
formation. On the other hand, Q [4] is a ROP compiler capa-

ble of using a small gadget search space. That is, it searches
only in the vulnerable binary, but not in libraries due to ran-
domized addresses which prohibit finding gadget. Although
Q is able to discover complex ROP chains using a limited
number of gadgets, it requires the use of a new language
named QooL. We were not able to find documentation and
examples of QooL, thus we argue that Q’s has limited ap-
plicability. Finally, it seems that Q is unable in practice to
generate functional payloads as reported by several pieces
of research [30, 31].

The work closest to ours ROP transformation is
Frankenstein [10, 11]. It is based on chaining pieces of code
harvested from benign system binaries (e.g., libraries). Al-
though the generated mutants fulfill the metamorphic prop-
erties, the authors’ definition of a gadget is a more relaxed
version of that used in ROP. They consider as gadgets any
sequence of bytes that are interpretable as valid x86 instruc-
tions. As such it cannot be considered a pure ROP solution.
The authors also do not present antivirus evasion results
(possibly due to the lack of an implementation that would
allow the automatic generation of mutants).

ROPInjector [12] acts as a trojan by injecting code seg-
ments capable of executing a ROP chain inside the infected
host binary (i.e., the ROP gadgets belong to host binary). It is
the only related work that has a fully functional implemen-
tation publicly available in the Internet7, but it relies upon
several assumptions in the ROP payload generation phase.
Specifically, in order to execute sophisticated operations like
conditional and loop structures, it generates assembly code
segments, in order to transfer the execution from Text to
Stack Segment and vice versa, instead of combining plain
ROP gadgets into chains. Thus, ROPInjector implements a
relaxed definition of ROP transformation and not the one de-
fined by Shacham [1]. Moreover, it generates ROP gadgets
when it is unable to find them in the actual binary that wants
to infect (e.g. register comparisons without being sequential
followed by a conditional jump). The above characteristics
of ROPInjector not only allow the creation of signatures for
static detection but also clearly indicate that ROPinjector is
a partial ROP compiler because it is unable to generate full
ROP payloads. Compared to ROPInjector and Frankenstein,
our solution is based on the pure definition of ROP as an-
alyzed by [1] and we take full advantage of ROP’s Turing
completeness.

Code Synthesis. Jha et al. [14] proposed a deobfusca-
tion method to simplify malicious samples with the aid of
SMT solver. They developed a tool named Brahma that can
be used to discover unintuitive code and for program under-
standing. Brahma iteratively synthesizes new programs that
work correctly. It starts with a set containing just one ar-
bitrarily chosen input. In each iteration, the procedure syn-
thesizes a program that works correctly on the current finite

7https://github.com/gpoulios/ROPInjector

https://github.com/gpoulios/ROPInjector


13

Code Snippet Length Emulation Number of Generated Commands Number of Generated Gadgets
1 2 3 4 1 2 3

1 (numerical opera-
tions)

100 ms 502 ms 910 ms 1230 ms 1506 ms 1053 ms - -

2 (2 numerical opera-
tions)

140 ms 1113 ms 1910 ms 2405 3290 ms 1200 ms 1257 ms -

2 (1 numerical opera-
tions and a syscall)

150 ms 505 ms 930 ms 1300 ms 1670 ms 1143 ms 1290 ms -

2 (1 numerical
operations and a
push/pop)

350 ms 536 ms 923 ms 1254 ms 1705 ms 1013 ms 1264 ms -

6 (6 numerical opera-
tions)

620 ms 3205 ms 5699 ms 7340 ms 10018
ms

3672 ms 3847 ms 4628 ms

6 (5 numerical
operations and a
push/pop)

610 ms 2839 ms 4810 ms 6250 ms 8179 ms 3879 ms 3595 ms 4568 ms

6 (5 numerical opera-
tions and syscall)

612 ms 2803 ms 4772 ms 6429 ms 8310 ms 3652 ms 3847 ms 4862 ms

Table 3: Performance of [m]allotROPism for a Variety of Code Snippet Lengths

Code Substitution Register Swapping and Control Flow Diffusion
(Due to SMT Solver) (Due to ROP Transformation)

Variation Code Substitution Detection rate (%) Control flow maintenance registers Gadget permutations (%) Detection Rate (%)

Original Shellcode 0/39 51.7%

r14, r11, r15
0% 0%
50% 0%
100% 0%

rbx, r15, r14
0% 0%
50% 0%
100% 0%

Variant 1 11/39 47.36%

r14, r11, r15
0% 0%
50% 0%
100% 0%

rbx, r15, r14
0% 0%
50% 0%
100% 0%

Variant 2 17/39 47.36%

r14, r11, r15
0% 0%
50% 0%
100% 0%

rbx, r15, r14
0% 0%
50% 0%
100% 0%

Variant 3 22/39 47.36%

r14, r11, r15
0% 0%
50% 0%
100% 0%

rbx, r15, r14
0% 0%
50% 0%
100% 0%

Table 4: Generated Malicious Phylogeny (the detection rates are links pointing to VirusTotal results)

set of inputs. If such a program is found, then the procedure
attempts to find a distinguishing input. If a distinguishing in-
put is found, then it is added into the set of inputs for subse-
quent iterations. In all other cases, the procedure terminates.
It either returns the correct program, or it notes that the com-
ponents provided are insufficient for synthesizing the correct
program. From a technical standpoint Brahma starts with

a random input value and calculates the output of the ob-
fuscated program on that input. Given the input/output pair
of previous steps with the aid of SMT solver, they gener-
ate a candidate program. Then, with the aid of SMT solver,
it checks whether a semantically different program can be
generated. In this case, Brahma generates another alternative
program and another distinguishing input. Then calculates

https://www.virustotal.com/#/file/1ac1990d9762cba8fcdf964fd2e102bbb5ab37050fe70a6f74055ef01c3469d4/detection
https://www.virustotal.com/#/file/7ce60a8ca41f9b87f868e12250f46a249640f9f97322121feec807ddbe4d523f/detection
https://www.virustotal.com/#/file/ef1dcde41e7bce317d414de41dbb97364e1fc10b78885b27c0586f028027a968/detection
https://www.virustotal.com/#/file/aca305d8b48ae90c7b033288c85795c457fc1c9ad247a9c1c94c9e3e13aeb833/detection
https://www.virustotal.com/#/file/15bb7fa106cac4a73a0cca23df93144003d8bd768dc5cb1bc5aae006a08785ed/detection
https://www.virustotal.com/#/file/5eb95528d46b4eae59a3fda9b23ad6c7ba2969dc6755976d0ad0ae5f0c4fad9b/detection
https://www.virustotal.com/#/file/3a0148481260f937339ab3df4078b163921e03dd1fd8149aa01022d2df303b51/detection
https://www.virustotal.com/#/file/8702e3b2b1a9589ac7fe1f5dc4ba8d295399b4ccdd9a9555c1a6894601d1c84c/detection
https://www.virustotal.com/#/file/5f52d762cfadeae043d9a13cc7a28b38c61099eafe924bbb532a3e64b64d2df4/detection
https://www.virustotal.com/#/file/1ac4ecbce853feb41c431be23c7797d10067942c0d38f49a010935ed11c08213/detection
https://www.virustotal.com/#/file/1c0c194f8e85118e1b0fb8c78b221be61087a6aae3030fa99659b87177d4f089/detection
https://www.virustotal.com/#/file/71483f41cbaace9b54817caa211a4c06bd3a08ee4feb57950fa584fb3d6d0ea1/detection
https://www.virustotal.com/#/file/705ebc256752d5e58b037bf5c48753fa5a6f1b70e42d4314a09ffca1aa04bd85/detection
https://www.virustotal.com/#/file/403e8b6f686f5dd87e7cc95e0dcc2463f603cc6151c361bbe7b98310d461031c/detection
https://www.virustotal.com/#/file/de4a7720e13ef666d222140336c2d368818f8347a633dfd9da0d46c03beeb05a/detection
https://www.virustotal.com/#/file/b89f93f106e943b06c30e9e2686856073a490caa25a249ed8121c8891e689d69/detection
https://www.virustotal.com/#/file/c58fdf88158f296bcb2c8986a54ed7a8d68fd8a9392fbaee4c0bc14a9b3f7431/detection
https://www.virustotal.com/#/file/7ce3b94d2fe56f655683633d82aa0cb353405945939a964f816c489bed95ec42/detection
https://www.virustotal.com/#/file/012ed90f146e2aa55ea50fe062d2628c42588da607422b7c62fee58f86abf16a/detection
https://www.virustotal.com/#/file/e10667af24029dce7e33a72b859d943f4a0e2dbb64482575a91971a400b86d8b/detection
https://www.virustotal.com/#/file/1041e1d6ac42ff20055e3d577cbacabb36d82a8c55269130051b402a495caf1e/detection
https://www.virustotal.com/#/file/4e0c74a0c9c4e290797fde4e744e917b66c8f5012f8e6dd4087acf56b96bdbb4/detection
https://www.virustotal.com/#/file/0dbd48f75c5605f0dc8e50067f04a77dbe91261404141e572202d53eb416e7d1/detection
https://www.virustotal.com/#/file/f08811623e299fe43843f5b3bec970e0f9da5ecfe4fc1164d8003769b6b2a19d/detection
https://www.virustotal.com/#/file/5dad0cba620da7521ac073c9f9489ee29ec0485cd7bc8c64ed59f57b38660090/detection
https://www.virustotal.com/#/file/e38a9aa6b37fa3758f6a20cc67a5e078fbc13cf1139bf13ce8c59cb2deadeefa/detection
https://www.virustotal.com/#/file/75a26bd74a696021ea47f0626b6757fad670a8a514e939606550aed0f69e9d3c/detection
https://www.virustotal.com/#/file/6fbc4a9f236280ea01b55abcc97114047bba7f33d2fa4d26ad7fc286eca66df0/detection


14

the output of the obfuscated program on that distinguishing
input and repeats the above steps until a semantically equiv-
alent program to the obfuscated one is generated. Brahma
deobfuscation capabilities were tested against highly obfus-
cated malware such as Conficker and MyDoom with sat-
isfactory results. [m]allotROPism in contrast with Brahma
uses the SMT Solver to generate code of all possible equiv-
alent substitutions as one of the requirements of metamor-
phism defined by O’Kane et al. [28] based on input-output
pairs provided by the emulator and not for code simplifica-
tion. Moreover, [m]allotROPism use random values for em-
ulation in order to discard unwanted solutions (commands)
provided by the SMT Solver and not as part of the equivalent
code generation procedure.

Synesthesia [15] is a framework able to generate shell-
codes under specific encoding restrictions. Implementation
of Synesthesia is a stand-alone compiler with three modes.
The shellcode generation module under input restrictions
based on shellcode’s behavior. The re-compilation module
of existing shellcode under input restrictions. The encode
and generate decoder loops for existing, non-encoded shell-
code binaries. According to its author, Synesthesia currently
is an experimental release that does not fulfill the goal of
being a compiler and requires intervention from the user in
order to manually interpret the results.

In the same direction as Jha et al. [14] Blazytko et
al. [17] proposed in their research a method that lever-
age emulators, SMT solvers and Monte Carlo Tree Search
(MCTS) to simplify given obfuscated codes in combina-
tion with user-provided memory dumps and memory ad-
dresses. Undoubtedly, we share some implementation simi-
larities with the publicly available prototype of Syntia [17]
but for different purposes. Our method is fully automated
and doesn’t require execution insights. It leverages emula-
tion to feed the SMT Solver in order to provide accurate se-
mantically equivalent mutations of a given malware without
any other user interaction in order to fulfill code substitu-
tion precondition as defined by O’Kane et al. [28]. As our
experimental evaluation shows our mutation engine gets as
input a detectable malware and provides as an outcome a
very large amount of untraceable mutated malware. Syntia
leverages Monte Carlo Tree Search (MCTS) based program
synthesis to compute a simplified expression that represents
a deobfuscated version of the obfuscated input. Syntia can
operate with high precision and is also able to reconstruct
the semantics from not linear ROP gadget invocations such
as our method outputs but it is not clear if it can success-
fully reconstruct the input malware precisely in order to be
detected by existing antivirus signatures. Finally, in order to
be able someone to use Syntia as an automated detection
mechanism against [m]allotrROPism it has to calculate all
the possible variations of our mutation engine until she/he

generates the input malware something that increases the
overhead of the method.

6.4 Discussion

Possible detection techniques and alternative solutions.
The generated variants of [m]allotROPism are subject to de-
tection using dynamic analysis. Evidently, the ROP trans-
formed shellcodes will execute the same system calls with
the same order, therefore the execution flow is not modi-
fied. Malware detection solutions such as [13] which rely
on dynamic analysis, will identify that the produced vari-
ants belong to the same malware family. However, there are
several anti-dynamic solutions that can work in tandem with
[m]allotROPism. For instance, one common anti-dynamic
analysis solution is the use of stalling code in case the mal-
ware detects itself running in a sandbox rather than a real
physical machine. That is, a malware sample can wait for a
long time (e.g., by performing arithmetic calculations) be-
fore performing any malicious activity or not performing
any activity at all.

There are even more robust and sophisticated solutions
for disrupting dynamic analysis. Malwash [32] relies on the
observation that although a malware cannot modify its sys-
tem calls and the order of their execution in a binary, it can
hide them within the stream of system calls that are per-
formed on the entire operating system. Thus, rather than ex-
ecuting the program in a single process, Malwash automat-
ically distributes the program across a set of pre-existing,
benign processes. Another direction proposed in [33] relies
on replacing a system call dependence graph to its semanti-
cally equivalent variants so that the similar malware samples
within one family turn out to be different. All these solu-
tions can work complementary to the evasion capabilities of
[m]allotROPism.

Limitations. Our method inherits all the benefits and
drawbacks of ROP, since it fully relies on it. More specifi-
cally, even if ROP is Turing complete, converting code struc-
tures such as loops and conditional branches to ROP can be
a challenging task, since we need free registers to perform
these conversions. Moreover, as shown in the experimental
results, [m]allotROPism cannot replace all code lines of the
considered shellcode with equivalent ROP gadgets (i.e., it
converted 22 out of 39 lines). Finally, we mention that our
implementation is a prototype and it is not currently func-
tional on any other operating system than macOS.

In the current research we combine two methods (SMT
Solvers and ROP gadgets) in order to fulfill formally
the properties of a mutation engine [28]. Specifically,
[m]allotROPism leverages the capabilities of SMT solvers
in order to generate from the assembly code of a given
malware as many as possible variations (transformations
in terms of commands) of the input. Because of SMT our



15

Research Characteristics Limitations Availability
Schwartz et al. [4] ROP compilation for small codebase size Requires knowledge of a new language

(QooL)
No

Poulios et al. [12] Binary host infection - Partial ROP
- Allows signature detection

Yes

Mohan et al. [11] Discovery of equivalent instructions in
system libraries

No acutal use of ROP No

Dullien et al. [5] Architecture independent gadget discov-
ery

ROP compilation is not automatic No

[m]allotROPism Generation of ROP equivalent shellcodes ROP transformation may not be always
possible due to limited free registers

Yes

Table 5: Method Comparison

method it is able to insert garbage into generated mutations
in terms of no-operations in explicit cases where the execu-
tion of commands does not affect their values. ROP transfor-
mation of any mutated variation of the malicious executable
into purely ROP form gave us the ability to hide totally their
structure while at the same time by leveraging the Turing
Completeness of ROP method we were able to perform a
very large amount of structure permutations in comparison
with the input malware. Let us recall here that we do not
find gadgets inside the memory spaces of running processes
nor into libraries. Contrary to previous works, that leverage
ROP gadgets found in benign programs and trigger the ROP
chain typically through a buffer overflow, we have the free-
dom to generate whatever equivalent ROP gadget is suitable
to replace an instruction. Thus, we transform an executable
to any ROP counterpart. We separate a given malware into
blocks according to specification rules and we convert those
blocks (basic block) into ROP gadgets and we place them
into mutated executable code. The pre-calculation of the size
of each ROP Gadget command and their order into the ex-
ecutable code segment gives us the ability to know which
exact address they will hold during execution. We achieve
code permutations by shuffling the order of the gadgets in
every generated mutation. From an ethical standpoint our in-
tention in the current work is the generation of mutation en-
gine able to generate malware phylogenies based on formal
approaches that respect the mutation preconditions for re-
search purpose not the generation of sophisticated malware
nor the weaponization of software development. As future
work, our intention is to calculate which and how mutation
preconditions impact static malware detection. Our empiri-
cal evaluation shows that we generated automatically a vast
amount of undetectable mutations from detectable malware
in terms of malware-based signature detection. Despite the
vast number of scientific researches in the field of malware
detection, static and behavioral detection of malware is un-
decidable problems [34]. The basic principles of our SMT
and ROP transformation mutation engine can be reversed
and used by anti–malware engines to generate family detec-

tion signatures for malware families rather than just signa-
tures that can only detect a specific malware sample. In other
words, detection engines will be able to identify with static
analysis the metamorphic properties of a malware (e.g., code
substitution or register swapping). It should be noted that
such a detection engine, which is in essence a static analy-
sis solution, should work in tandem with dynamic analysis
complementing their detection capabilities. In general, this
detection approach can raise the bar for the malicious code
developers and eliminate their ability to transform an iden-
tified malware to an unknown one with basic code transfor-
mations.

7 Conclusions

In this work, we provide and analyze a formal way of gen-
erating malware families based on metamorphic precondi-
tions with the aid of SMT solvers and ROP transforma-
tions. We design and analyze a metamorphic engine named
[m]allotROPism that generates semantically equivalent vari-
ations of an input malware in an automated manner. To
achieve this, we leverage SMT solvers to calculate equiv-
alent operations for a given instruction and then algorith-
mically convert them into ROP representation. Since ROP
is Turing-complete, we argue that we are able to execute
any arbitrary computation. Contrary to previous works that
leverage ROP gadgets found in benign programs and trigger
the ROP chain typically through a buffer overflow, we have
the freedom to generate whatever equivalent ROP gadget is
suitable to replace an instruction. Thus, we are able to trans-
form an executable to any ROP counterpart. We evaluated
the proposed metamorphic engine against a set of antivirus
solutions. The results showed that our proposed mutation
engine is able to produce undetectable ROP variations from
a real-world x64 shellcode. We believe that the antivirus in-
dustry should be aware of [m]allotROPism techniques and
counteract accordingly to this potential threat. We hope also
that this work will be beneficial for the research commu-



16

nity, as we release the implementation as open–source along
with our dataset (i.e., the generated ROP transformations of
the shellcode), so that future studies on malware detection
consider also ROP as an antivirus evasion method.

Acknowledgment

This work was supported in part by:

– CUREX project of Horizon H2020 Framework Pro-
gramme of the European Union under grant agreement
No 826404.

– SECONDO project of H2020 MSCA RISE 2018 under
grant agreement number 823997.

– SPIDER project of Horizon H2020 Framework Pro-
gramme of the European Union under grant agreement
No 833685

Content reflects only the authors’ view and EU is not respon-
sible for any use of the information it contains. Conflict of
Interest: The authors declare that they have no competing
interests. Ethical approval: This article does not contain
any studies with human participants or animals performed
by any of the authors.

References

1. H. Shacham, The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86), in: Proceedings of the 14th ACM conference on
Computer and communications security, ACM, 2007,
pp. 552–561.

2. J. M. Bauer, M. J. Van Eeten, T. Chattopadhyay, Y. Wu,
Itu study on the financial aspects of network security:
Malware and spam, ICT Applications and Cybersecu-
rity Division, International Telecommunication Union,
Final Report, July, 2008.

3. PandaLabs, 2017 in figures: The exponential growth of
malware (Accessed August 2, 2018).
URL https://www.pandasecurity.com/
mediacenter/malware/2017-figures/

4. E. J. Schwartz, T. Avgerinos, D. Brumley, Q: Exploit
hardening made easy., in: USENIX Security Sympo-
sium, 2011, pp. 25–41.

5. T. Dullien, T. Kornau, R.-P. Weinmann, A framework
for automated architecture-independent gadget search,
in: 4th USENIX Workshop on Offensive Technologies
(WOOT 10), 2010.

6. H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, D. Gao, Soft-
ware watermarking using return-oriented programming,
in: Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIA
CCS ’15, ACM, New York, NY, USA, 2015, pp. 369–
380.

7. K. Lu, S. Xiong, D. Gao, Ropsteg: Program steganogra-
phy with return oriented programming, in: Proceedings
of the 4th ACM Conference on Data and Application
Security and Privacy, CODASPY ’14, ACM, New York,
NY, USA, 2014, pp. 265–272.

8. D. Mu, J. Guo, W. Ding, Z. Wang, B. Mao, L. Shi,
Ropob: Obfuscating binary code via return oriented
programming, in: Security and Privacy in Communica-
tion Networks, Springer International Publishing, 2018.

9. N. R. Weidler, D. Brown, S. A. Mitchell, J. Ander-
son, J. R. Williams, A. Costley, C. Kunz, C. Wilkinson,
R. Wehbe, R. Gerdes, Return-oriented programming on
a resource constrained device, Sustainable Computing:
Informatics and Systems 22 (2019) 244–256.

10. V. Mohan, K. W. Hamlen, Frankenstein: A tale of hor-
ror and logic programming, Book Reviews 2017 (02)
(2017).

11. V. Mohan, K. W. Hamlen, Frankenstein: Stitching mal-
ware from benign binaries., in: 21s USENIX Workshop
on Offensive Technologies (WOOT 12), Austin, TX,
2012, pp. 77–84.

12. G. Poulios, C. Ntantogian, C. Xenakis, Ropinjector: Us-
ing return oriented programming for polymorphism and
antivirus evasion, Blackhat USA, 2015.

13. J. Ming, D. Xu, Y. Jiang, D. Wu, Binsim: Trace-based
semantic binary diffing via system call sliced segment
equivalence checking, in: 26th USENIX Security Sym-
posium, 2017.

14. S. Jha, S. Gulwani, S. A. Seshia, A. Tiwari, Oracle-
guided component-based program synthesis, in: Pro-
ceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering-Volume 1, ACM, 2010,
pp. 215–224.

15. R. Rolles, Synesthesia: A modern approach to shell-
code generation (2016).
URL http://www.msreverseengineering.
com/blog/2016/11/8/
synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk

16. B. Dutertre, L. De Moura, The yices smt solver, Tool
paper at SRI International 2 (2) (2006) 1–5.

17. T. Blazytko, M. Contag, C. Aschermann, T. Holz, Syn-
tia: Synthesizing the semantics of obfuscated code, in:
USENIX Security Symposium., 2017.

18. H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, D. Boneh, On the effectiveness of
address-space randomization, in: Proceedings of the
11th ACM conference on Computer and communica-
tions security, ACM, 2004, pp. 298–307.

19. M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti, Control-
flow integrity principles, implementations, and applica-
tions, ACM Trans. Inf. Syst. Secur. 13 (1) (2009) 4:1–
4:40.

https://www.pandasecurity.com/mediacenter/malware/2017-figures/
https://www.pandasecurity.com/mediacenter/malware/2017-figures/
https://www.pandasecurity.com/mediacenter/malware/2017-figures/
https://www.pandasecurity.com/mediacenter/malware/2017-figures/
http://www.msreverseengineering.com/blog/2016/11/8/ synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/ synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/ synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/ synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/ synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk


17

20. N. Carlini, D. Wagner, {ROP} is still dangerous: Break-
ing modern defenses, in: 23rd USENIX Security Sym-
posium, 2014, pp. 385–399.

21. T. J. Schaefer, The complexity of satisfiability prob-
lems, in: Proceedings of the tenth annual ACM sym-
posium on Theory of computing, ACM, 1978, pp. 216–
226.

22. L. De Moura, N. Bjørner, Z3: An efficient SMT solver,
in: International conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer,
2008, pp. 337–340.

23. D. Park, Y. Zhang, M. Saxena, P. Daian, G. Roşu, A
formal verification tool for ethereum vm bytecode, in:
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ACM, 2018, pp. 912–915.

24. M. Vanhoef, F. Piessens, Symbolic execution of secu-
rity protocol implementations: handling cryptographic
primitives, in: 12th USENIX Workshop on Offensive
Technologies (WOOT 18), 2018.

25. J. Vanegue, S. Heelan, R. Rolles, SMT solvers in soft-
ware security, in: 6th USENIX Workshop on Offensive
Technologies (WOOT 12), 2012.

26. J. Bornholt, Program synthesis, explained (Accessed
February 2, 2018).
URL https://homes.cs.
washington.edu/bornholt/post/
synthesis-for-architects.html

27. P. Szor, The art of computer virus research and defense,
Pearson Education, 2005.

28. P. O’Kane, S. Sezer, K. McLaughlin, Obfuscation: The
hidden malware, IEEE Security & Privacy 9 (5) (2011)
41–47.

29. E. H. Spafford, The internet worm program: An anal-
ysis, ACM SIGCOMM Computer Communication Re-
view 19 (1) (1989) 17–57.

30. R. Wartell, V. Mohan, K. W. Hamlen, Z. Lin, Bi-
nary stirring: Self-randomizing instruction addresses of
legacy x86 binary code, in: Proceedings of the 2012
ACM conference on Computer and communications se-
curity, ACM, 2012, pp. 157–168.

31. V. Pappas, M. Polychronakis, A. D. Keromytis, Smash-
ing the gadgets: Hindering return-oriented program-
ming using in-place code randomization, in: Security
and Privacy (SP), 2012 IEEE Symposium on, IEEE,
2012, pp. 601–615.

32. K. K. Ispoglou, M. Payer, malwash: Washing malware
to evade dynamic analysis, in: 10th USENIX Workshop
on Offensive Technologies (WOOT 16), 2016.

33. J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, B. Mao, Re-
placement attacks: Automatically impeding behavior-
based malware specifications, in: Applied Cryptogra-

phy and Network Security - 13th International Confer-
ence, ACNS 2015, Springer, 2015, pp. 497–517.

34. F. Cohen, Computer viruses: theory and experiments,
Elsevier, Computers & Security 6 (1) (1987) 22–35.

Appendix

1 global start
2 start:
3 mov r8b, 0x02
4 shl r8, 0x18
5 or r8, 0x61
6 mov rax, r8
7 xor rdx, rdx
8 mov rsi, rdx
9 inc rsi

10 mov rdi, rsi
11 inc rdi
12 syscall
13 mov r12, rax
14 mov r13, 0x0100007f5c110101
15 mov r9b, 0xff
16 sub r13, r9
17 push r13
18 mov r13, rsp
19 inc r8
20 mov rax, r8
21 mov rdi, r12
22 mov rsi, r13
23 add rdx, 0x10
24 syscall
25 sub r8, 0x8
26 xor rsi, rsi
27 dup:
28 mov rax, r8
29 mov rdi, r12
30 syscall
31 cmp rsi, 0x2
32 inc rsi
33 jbe function
34 sub r8, 0x1f
35 mov rax, r8
36 xor rdx, rdx
37 mov r13, 0x68732f6e69622fff
38 shr r13, 0x8
39 push r13
40 mov rdi, rsp
41 xor rsi, rsi
42 syscall �

Listing 4: Shellcode.

x86-64 Instruction Set. Following the technological
shift from 32-bit to 64-bit CPUs, in this paper we will con-
sider only the modern x86-64 architecture. In x86-64 assem-
bly there are sixteen registers: rsp, rbp, rax, rbx, rcx,
rdx, rdi, rsi and r8-r15. Registers rbx, rbp, r12,
r15 are callee-saved registers, meaning that they are saved
across function calls. In contrast rax, rcx,rdx, rdi, rsi,
rsp, r8, r11 are considered caller-saved registers, mean-
ing that they may not be saved across function calls. By con-
vention, register rax is used to store functions return values

https://homes.cs.washington.edu/bornholt/post/synthesis-for-architects.html
https://homes.cs.washington.edu/bornholt/post/synthesis-for-architects.html
https://homes.cs.washington.edu/bornholt/post/synthesis-for-architects.html
https://homes.cs.washington.edu/bornholt/post/synthesis-for-architects.html


18

(if they exist and are no more than 64 bits long). For a typ-
ical function invocation, the program should place the first
six integer or pointer parameters in the registers rdi, rsi,
rdx, rcx, r8, r9 to the called functions. For more than six
parameters their values must be pushed onto the stack with
the first argument topmost. rdi, rsi, rdx, rcx, r8, r9.


	Introduction
	Related Work
	Preliminaries
	Motivation and Overview
	Mutation Engine
	Evaluation
	Conclusions

